101ODATA

Embedded QuickApps

(212) 405.1010 | info@1010data.com | Follow: @1010data | www.1010data.com

Embedded QuickApps | Contents | 2

Embedded QUICKAPPS ..o e 3
SF= 1001 0] (O 10010 o] o F PP OPUPPPTPPPPPPPNS 5
Sample WeD @pPPlICALION.eiiee e 8

© 2017 1010data, Inc. All rights reserved.

Embedded QuickApps | Embedded QuickApps | 3

Embedded QuickApps

QuickApps can be embedded inside web applications built outside of 1010data, and they can interact with
elements in the application by sending and receiving values that are meaningful to both.

Embedding a QuickApp in a website that is external to 1010data is as simple as creating an <i frame>
and pointing it at the QuickApp's URL. For reference, a QuickApp can be accessed directly using the
following URL format:

https://www2.1010data.com/cgi-bin/ [VERSION]/quickapp?path=[PATH TO QUICKAPP]

Pointing a web browser to a valid QuickApp URL will prompt the user for 1010data credentials and then
display the QuickApp in standalone mode. This means that the user can only interact with the Ul elements
of the QuickApp, not with any of the other components of the 1010data web interface, such as the Folder
and Tables browser. Standalone QuickApps are useful if the objective is to avoid the need for the end user
to log into 1010data and manually open the QuickApp. This feature also permits embedding a QuickApp
into another webpage via an <i frame> HTML element.

While the ability to embed a standalone QuickApp is useful in and of itself, it becomes more so when the
QuickApp can interact with an enclosing web application. This can be accomplished with some basic event
handling and message construction on the JavaScript side, and two special widgets, transmitter and
receiver, on the QuickApp side.

This tutorial demonstrates the critical components of such interactions using a simple web application. The
following is an annotated screenshot of the sample application:

Embedded QuickApps | Embedded QuickApps |4

"CTCLATA Embedded

Selectayear | 2015 v

Current year:
60 2015——@)
Current zip code:

v 10017——@)

40 Enter a zip code:

Mean
Temp
(F)

20

01/11/15 03/10/15 05/07/15 07/04/15 08/31/15 10/28/15 é
Date

Cols 1103 0f3, Rows 110 120f 12

Zipcode Date Mean
Temp
Zipcode date ®
meantempl

10017 01/15/15 30
10017 02/15/15 14
10017 03/15/15 40
10017 04/15/15 62
10017 05/15/15 65 —o
10017 06/15/15 74
10017 07/15/15 76
10017 08/15/15 82
10017 09/15/15 73
10017 10/15/15 58
10017 11/15/15 48
10017 12/15/15 61

A. Current year
Displays the value of the current year selected.
This value is used to filter the data displayed in the chart and grid within the embedded QuickApp.

In this example, the input for the year is provided via a drop-down menu in the embedded QuickApp,
not the enclosing web application.

B. Current zip code
Displays the value of the current zip code entered.
When first launched, the enclosing web application will show an initial value for the zip code.
The value can be changed via the Enter a zip code field in the web application.
C. Enter a zip code
This field accepts a zip code value.

If a valid zip code is entered, the data displayed in the QuickApp will reflect the new value.

Embedded QuickApps | | 5

The value is also shown under Current zip code in the web application.
D. Embedded QuickApp

The 1010data QuickApp that is embedded in the external web application via an <i frame>. The
QuickApp displays a drop-down menu to select the desired year as well as a chart and grid that show
the results of the current selections.

The process of embedding a QuickApp in a web application is fast and fun! With a little bit of JavaScript
and some help from transmitter and receiver, QuickApps can be even more customized and more
flexible.

Sample QuickApp

This basic QuickApp provides an example of Macro Language code that sends and receives messages to
and from an enclosing JavaScript application.

When communicating with an external JavaScript application, understanding how the transmitter and
receiver widgets facilitate that communication is important.

In this example, the QuickApp uses the receiver widget to receive a message sent from a web
application via the JavaScript postMessage method. The message specifies values that should be
assigned to particular dynamic variables. See receiver in the 1010data Reference Manual for more
information on this widget.

The transmitter widget lets the QuickApp send a message (via a JavaScript postMessage call)
that will be received by the encapsulating JavaScript application. The transmitter widget sends a
message whenever a change is made to any of the dynamic variables it references. The JavaScript
application will then update its variables based on the values it receives from the transmitter widget.
See transmitter in the 1010data Reference Manual for more information on this widget.

This example QuickApp is very basic and uses techniques that should be familiar to QuickApp developers
at almost any level. Here is a basic description of what the QuickApp does:

« Provides a drop-down menu to select a year to filter the results for the data to be plotted

* Plots a line chart consisting of the mean temperature for the 15th of every month over the period of a
given year for a particular zip code

« Displays the plotted data in tabular form

« Shows a progress bar while the QuickApp is running any queries

The complete QuickApp code is shown below:

<defblock name="sel year">
<table>2014;2015
</table>
</defblock>
<defblock name="to_plot" zipcode="10017" year="2015">
<base table="pub.demo.weather.wunderground.observed daily"/>
<sel value="year (date)={Qyear}"/>
<sel value="zipcode={@zipcode}"/>
<sel value="day (date)=15"/>
<colord cols="zipcode,date,meantempi"/>
<sort col="date" dir="up"/>
</defblock>
<dynamic year="2015" zipcode="10017">
<widget class_="receiver"/>
<widget class_ ="transmitter" message ="{Qyear}, {@zipcode}" onrender_="1"/>
<widget class_="progressbar" display ="top"/>
<layout arrange ="v">
<widget class ="dropdown" label ="Select a year"
value ="@year" insert_="sel_year"/>

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=MLOperations/appdev/widgetClassValues/receiverWidget.html
http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=MLOperations/appdev/widgetClassValues/transmitterWidget.html

Embedded QuickApps | | 6

<widget class_="graphics" width ="700"
base ="pub.demo.weather.wunderground.observed daily">
<call block="to_plot" year="{Q@year}" zipcode="{@zipcode}"/>
<graphspec width="600" height="400">
<chart type="line" samples="100000">
<style seriescolors="#F26F21" linemarkershow="0"/>
<data x="date" y="meantempi" yrot="65"/>
</chart>
</graphspec>
</widget>
<widget class_="grid" type_ ="scroll"
base ="pub.demo.weather.wunderground.observed daily">
<call block="to plot" year="{Qyear}" zipcode="{@zipcode}"/>
</widget>
</layout>
</dynamic>

Notice that the QuickApp filters by zip code, but doesn't provide any Ul for the user to make a selection on
that metric. The input mechanism will be provided by the web application.

The following is an annotated screenshot of the QuickApp:

Embedded QuickApps | Embedded QuickApps | 7

Select a year 2014 r _o

70

60

Mean
Temp
(F)

50

40

01/29/14 03/28/14 05/25/14 07/22/14 09/18/14 11/15/14

Date |
Cols1t030f3, Rows 1to120f12 —
Zipcode Date Mean
Temp
Zipcode date
(F
meantempi
10003 01/15/14 40
10003 02/15/14 3z
10003 03/15/14 50
10003 04/15/14 48
10003 05/15/14 64 _o
10003 06/15/14 70
10003 07/15/14 78
10003 0B/15/14 67
10003 09/15/14 63
10003 10/15/14 73
10003 11/15/14 38
10003 12/15/14 42

A. Select a year

A drop-down menu that provides the end user with two options: 2014 or 2015. The values are
provided by the <defblock> named sel year.

B. Mean temperature over time chart

A line chart displaying the mean temperature (in Fahrenheit) for the 15th of each month of the
selected year for a particular zip code. The data that will be plotted is specified via the <defblock>
named to plot.

C. Mean temperature over time grid

A grid widget that displays the data that is being graphed in the line chart. Data for this grid is also
specified by the <defblock> named to_plot.

Embedded QuickApps | | 8

The QuickApp itself is defined within the <dynamic> element, which for this example contains the
following widgets:

* receiver - receives messages from the JavaScript application

* transmitter - sends messages to the JavaScript application
 progressbar - shows a progress bar while the QuickApp is running any queries
e dropdown - allows the user to select a year to filter results

* graphics - displays the resultant data in the form of a line chart

e grid - displays the resultant data in tabular form

A <layout> element is used to vertically arrange the three visible widgets.

Note: Neither the transmitter nor the receiver widget has any visible manifestation when the
QuickApp is run.

The receiver widget is created with the following Macro Language code:
<widget class ="receiver"/>

When it receives a message sent from a web application via the JavaScript postMessage method, it sets
the dynamic variables specified in the message to the supplied values.

The transmitter widget is created with the following Macro Language code:
<widget class ="transmitter" message ="{Q@year},{@zipcode}" onrender ="1"/>

The message attribute specifies the format of the message the transmitter widget will send to the
JavaScript application. In this example, the message will consist of the values of the dynamic variables
year and zipcode, separated by a comma. When either of these dynamic variables change, a message
is sent to the JavaScript application. When it sends this message to the DOM of the enclosing web
application, the application will store the value of the message as a comma-separated list and process it
accordingly. Because onrender ="1", a message will be sent to the containing web application when
the QuickApp is initially rendered.

In addition, it is highly advisable to include a progressbar widget in your QuickApp if it is going to be
embedded within an external web application. This gives the user a visual indicator that the QuickApp has
received the inputs and is running the applicable queries. The progressbar widget in this example is
created with the following line of code:

<widget class_="progressbar" display ="top"/>

Since display ="top", the progress bar will appear over the top of the QuickApp. See progressbar in
the 1010data Reference Manual for more information.

See Sample web application on page 8 for an example of JavaScript code that can be used to connect
this QuickApp with an external web application.

Sample web application

HTML and JavaScript are used to build a small web application, embed a QuickApp into it, and
interconnect both for shared data and user interactions.

This example web application is relatively simple and is designed specifically to demonstrate how to create
interactions between an embedded QuickApp and an enclosing web application. To begin, here is a quick
list of features of the sample application:

» Shows the value of the year selected in the embedded QuickApp
» Shows the value of the zip code entered in the web application

« Provides an input field for entering a new zip code value

« Provides additional branding/styling

Sample HTML and JavaScript code for the web application is shown below:

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=MLOperations/appdev/widgetClassValues/progressbarWidget.html

Embedded QuickApps | |9

<!DOCTYPE html>
<html>
<head>
<title>1010data Embedded QuickApps!</title>
<meta name="viewport" content="width=device-width,
initial-scale=1.0" charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge;chrome=1" />
<link href="1010data-DC-BS.css" rel="stylesheet" media="screen"/>

<style>
.rn {text-decoration: underline; }
</style>
<link href="styles.css" rel="stylesheet" media="screen"/>
<script>

window.onload = function () {
var iframe = document.querySelector ("iframe");

var win = iframe.contentWindow;
var zip = document.querySelector ('#input zip');
win.postMessage ({msg: "init",

uid: "[1010data USERNAME]",

pswd: "[lOlOdata:PASSWORD]"}, iframe.src) ;
zip.addEventListener ("change", function (e) {
win.postMessage ({set: {"zipcode": e.target.value}}, iframe.src);
var current zip = document.querySelector ("#current zip");
current_zipTinnerHTML = e.target.value; B
}):
window.addEventListener ("message", function (e) {
var data = e.data.split(',")
var current year = document.querySelector ("#current year");
current year.innerHTML = datal[0];
var current zip = document.querySelector ("#current zip");
current_zipTinnerHTML = datal[l]; N
}):
}
</script>
</head>
<body>
<div class="navbar navbar-inverse navbar-fixed-top" role="">
<div class="container">
<div class="navbar-title">
<p class="1010logo">
<img src="1010datalogo.png"
style="margin-top: .7em;display: inline;float: left;"/>
<p style="color: white;display: inline-block;
padding-left: .2em;font-size: 24pt;">
<p style="display: inline;padding-top: 10px;">
<p style="display: inline;color: #F1B434;
font-size: 36px;margin-top: 5px;">Embedded</p>
<p style="display: inline;color: #F26F21;
font-size: 36px;margin-top: 5px;"> QuickApps!</p>
</p>
</div>
</div>
</div>
<div class="container_ exchange">
<div class="inner">
<div class="stuff">
<h3>Current year:</h3>
<div id="current_year">2015</div>
<h3>Current zip code:</h3>
<div id="current_zip">10017</div>
<h3>Enter a zip code:</h3>
<input type="field" name="zip" id="input zip">
</div>

Embedded QuickApps | | 10

</div>
<div>
<iframe class="embedded"
src="https://www2.1010data.com/cgi-bin/beta-latest/quickapp?
path=pub.doc.samples.embedded ga.sample_ga"
style="width: 800px; height: 1000px" frameborder="0"/>
</div>
</div><!--end container exchange-->
<script src="jQuery-2.0.3.js"></script>
<script src="bootstrap.min.js"></script>
</body>
</html>

Note: This brief overview will not address the HTML used in the construction of the web
application. Instead, it will focus on the JavaScript necessary to create interactions between the
QuickApp and the enclosing application.

Below is the JavaScript function that is called when the web application finishes loading:

window.onload = function () {
var iframe = document.querySelector ("iframe") ;
var win = iframe.contentWindow;
win.postMessage ({msg: "init",
uid: "[10l0data USERNAME]",

pswd: "[10l10data PASSWORD]"}, iframe.src);
var zip = document.querySelector ('#input zip');
zip.addEventListener ("change"”, function (e) {
win.postMessage ({set: {"zipcode": e.target.value}}, iframe.src);
var current zip = document.querySelector ("#current zip");
current_zipfinnerHTML = e.target.value;
})
window.addEventListener ("message”, function (e) ({
var data = e.data.split(',"')
var year = document.querySelector ("#current year");
year.innerHTML = datal[0];
var zip = document.querySelector ("#current zip");
zip.innerHTML = datal[l];
})
}

The JavaScript function first creates a variable, i frame, to reference the <i frame> element that contains
the QuickApp in the web application.

var iframe = document.querySelector ("iframe") ;

It then creates a variable, win, to access the window object inside the iframe. This is how the QuickApp's
DOM is accessed.

var win = iframe.contentWindow;

An initialization message is sent to the QuickApp using the postMessage method. This message will be
interpreted by the receiver widget in the QuickApp.

win.postMessage ({msg: "init",
uid: "[101 Odata_USERNAME] W
pswd: "[10l10data PASSWORD]"}, iframe.src);

Note: The message in this example contains placeholders for the 1010data credentials; however,
you should not enter your 1010data username and password directly in the JavaScript code. You
should provide a secure means within your web application for obtaining these values from the
user and specifying them to postMessage. Alternatively, you could omit this postMessage call
altogether, in which case the user will be prompted to enter their credentials via the standard
1010data login page when the web application loads.

When valid 1010data credentials are specified, a 1010data session will be authenticated.

Embedded QuickApps |

A variable, zip, is created to access the input field where the user can enter a zip code. This input field is
the HTML element with an ID of input zip.

var zip = document.querySelector ('#input zip');

The zip.addEventListener method registers a function that is called when the input zip element's
value is changed by the user. When the value is changed, the function associated with the event listener
sends a message to the QuickApp via the postMessage method telling it to set the dynamic variable
zipcode in the QuickApp to the new value from the input field. The input field's value is accessed using
the e parameter to the event listener function. The event listener function then sets the value of the HTML
element with an ID of current zip to the value of the input zip element, so that the new zip code will
be displayed in the web application.

zip.addEventListener ("change", function (e) {
win.postMessage ({set: {'"zipcode": e.target.value}}, iframe.src);
var current zip = document.querySelector ("#current zip");
current zip.innerHTML = e.target.value;

Y

An window.addEventListener method registers a function that is called when the window receives
data through a websocket. When information is sent from the QuickApp via the transmitter widget, the
function associated with the event listener splits the comma-separated message that has been received
from the QuickApp into a JavaScript array. It then updates the year and zip code that are being displayed
by the HTML elements with the IDs current year and current zip, respectively, using the values in
the array.

window.addEventListener ("message'", function (e) {
var data = e.data.split(',')
var year = document.querySelector ("#current year");
year.innerHTML = datal[O0];
var zip = document.querySelector ("#current zip");
zip.innerHTML = datall];
}):

When the window. onload function runs, the JavaScript application will be set up to send messages to
and receive messages from the embedded QuickApp.

See Sample QuickApp on page 5 for an example of a QuickApp that uses the transmitter and
receiver widgets to communicate to this external web application.

|11

	Contents
	Embedded QuickApps
	Sample QuickApp
	Sample web application

