
(212) 405.1010 | info@1010data.com | Follow: @1010data | www.1010data.com

Year-Over-Year Analysis

Year-Over-Year Analysis | Contents | 2

© 2017 1010data, Inc. All rights reserved.

Contents

Retail Year-Over-Year (YOY) Analysis...3
Quarter with Highest Sales and Highest Growth..9

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 3

Retail Year-Over-Year (YOY) Analysis

Retailers frequently measure their performance by comparing current year numbers to prior year numbers.
This type of analysis is referred to as a year-over-year (YOY) analysis and can be done many ways using
basic 1010data functionality. To start, we will examine how to easily perform a YOY calculation using a
simple tabulation, some G_Functions, and some basic String Functions.

One of the most basic ways to measure a retailer's trends, whether by store, department, SKU, or any
other dimension, is by finding the difference between the current year's performance and the prior year's
performance in terms of dollars or percentages. Let's first answer the question: How much more/less are
my sales in a given month as compared to that same month the prior year in terms of dollars? We will use
the Sales Detail table as the basis of our analysis. This type of transactional data is quite common among
retailers.

The Sales Detail table contains a transaction number, transaction date, and SKU for every transaction at
our retailer. In addition, the above table includes an Extended Sales (xsales) column indicating the price
of each SKU sold. This column will be important for our YOY analyses.

Revisiting our central question – How are the sales for each month compared to the sales for the same
month the previous year? – we first want to determine what month and year each transaction occurred in.
To do this, we can use two simple String Functions to extract the month and year from the Date column.

In the 1010data GUI, click Actions > Edit Actions (XML)... and enter the following text:

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>

Both the month(X) and year(X) functions work to extract the relevant information from a date
column. Both functions produce an integer as the result: The month(X) function produces a one-
or two-digit integer representing the month of the date, and the year(X) function produces a four-
digit integer. (If you prefer using the month name, whether JAN, Jan, January, etc., you can use the
case(X;V1;R1;V2;R2;...;D) function, which we will touch on at the end of this analysis.) Multiple date
formats can be input into these functions, including the standard MM/DD/YY format in the table above.

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/TimeDateFunctions/month.html
http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/TimeDateFunctions/year.html
http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/CategorizationFunctions/case.html

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 4

Note: Keep in mind that the format="type:nocommas" isn't necessary for the calculations to
work correctly, but it will simply make the year look correct in the resulting column.

Now that we have all the time information we need, we can begin to aggregate the sales data for each
month/year grouping. The simplest way to aggregate the data is by using a tabulation. Because we are
concerned with sales by month/year, we will group by both of these new columns and sum up sales.

Here are our requirements for the tabulation:

• Group by the month and year
• Calculate the sum of sales

You can use the 1010data GUI to perform this tabulation. Just go to Analysis > Tabulation...

Let's take a look at the Tabulation dialog to understand how to create the aggregations we're interested in.
After, we'll quickly run through the Macro Language code generated by this tabulation. Here's the dialog:

Now that we've defined our grouping metric and the summarizations we're interested in, click Submit to
get the results:

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 5

We now have the sales data aggregated by each year/month grouping, as shown above. This makes
month-to-month comparisons much cleaner to calculate. Before we move to the next step, let's take a
closer look at the 1010data Macro Language produced by the tabulation.

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol source="xsales" fun="sum" label="Sum of`Extended`Sales"/>
</tabu>

When a tabulation is created using the Tabulation dialog, the default name for the column is t0 (which
you can see at the top of the Sum of Extended Sales column in the screenshot above). Let's give it a
more meaningful name. In the Edit Actions (XML) dialog, add the following text that appears in bold:

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>
</tabu>

Note that we grouped by year and then month, and not the other way around. While you can just as easily
input the break columns in the reverse order, 1010data will sort the columns last to first. In other words,
our tabulation sorted the month column in ascending order, and then sorted the year column in ascending
order. This is how we can get the appearance we want. If we input the reverse order for the break columns,
the resulting tabulation would be ordered the following way:

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 6

Now that we understand how we got our tabulation results and what they mean, we need to compare each
month's aggregated sales number to the same number for one year prior. Let's create a new column that
will pull the total sales from one year prior using the G_Function g_rshift(G;S;O;X;N). In the Edit
Actions (XML) dialog, insert the Macro Language code in bold below to create this column.

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>
</tabu>
<willbe name="ly_sales" value="g_rshift(month;;;tot_sales;-1)" format="dec:2"
 label="Last Year`Sales"/>

Running the above Macro Language code should give you the following results:

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/GroupFunctions/g_rshift.html

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 7

Now let's quickly take a look at the g_rshift(month;;;t0;-1) function and what it calculated. The G
argument is simply the month column, since that is the time period we are interested in using in our YOY
calculations. Since we want to include all rows in the calculation and do not need to order the data (since
it's already sorted correctly), we can leave the S and O arguments blank. The X argument contains the
column we wish to use the function on, which would be our new Sum of Extended Sales (tot_sales)
column. Lastly, the N argument is -1 because we are interested in finding the prior row with the same
month value. Because each month only has one row per year and every year has a row for all 12 months,
the prior row for each month would be for the previous year. Not surprisingly, if there is no data for the prior
year's value, the result in the column will be N/A. As we've already seen, we now have a column (Last
Year Sales) that pulls the value in the tot_sales column for the prior year and copies that value into our
new column (ly_sales) .

The last step in our analysis is calculating the actual change in sales. Every row now contains both values
necessary for the calculation: current sales and prior sales. All we have to do is find the difference. The
difference can be represented in several ways, but a simple subtraction or percent calculation is most
common. Adding the additional code below will satisfy both methods.

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 8

</tabu>
<willbe name="ly_sales" value="g_rshift(month;;;tot_sales;-1) format="dec:2"
 label="Last Year`Sales"/>
<willbe name="yoy" value="tot_sales-ly_sales" format="dec:2"/>
<willbe name="yoy_perc" value="(tot_sales-ly_sales)/ly_sales"
 format="type:pct;dec:2"/>

Our new column, yoy, simply subtracts last year's sales total from this year's sales total to give an
absolute difference. The column yoy_perc converts this same subtraction into a percentage increase/
decrease of last year's sales total. The computed columns will look as they do below:

Congratulations! You have just completed a YOY analysis using a tabulation. While this method is very
useful if you want to do other G_Function manipulations on the aggregated sales data, you can also
chose to do the above analysis using a cross tabulation. By using a cross tabulation, you can get the
sales totals for a given month across all years in the same row. We just did something similar using
g_rshift(G;S;O;X;N) to pull last year's sales into the same row as current year's sales. The cross
tabulation will get you there much more quickly with only a few minor adjustments to the Macro Language
code.

Below is the Macro Language for performing the YOY analysis using a cross tabulation. Only the portions
that appear in bold differ from our Macro Language for the previous YOY analysis.

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 9

<tabu label="Tabulation on Sales Detail" breaks="month" cbreaks="year"
 clabels="short">
 <break col="year" sort="up"/>
 <tcol source="xsales" fun="sum" label="Sum of`Extended`Sales"/>
</tabu>
<willbe name="yoy" value="m2-m1" format="dec:2"/>
<willbe name="yoy_perc" value="(m2-m1)/m1" format="type:pct;dec:2"/>
<sort col="month" dir="up"/>

Note: You will notice that we no longer need to use the g_rshift(G;S;O;X;N) function because
the cross tabulation nicely creates a separate column for each year.

Now that you know how to perform a YOY analysis two ways, let's take this knowledge a step further. Next,
we will determine which quarter had the highest sales and which quarter saw the largest YOY growth.

Quarter with Highest Sales and Highest Growth

The next step in our YOY analysis of sales data is to determine which quarter had the highest sales and
greatest percent growth. We'll start with the tabulation we have already produced, which gives sales totals
for each month/year combination:

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 10

As a reminder, we can obtain the above tabulation using the Macro Language below:

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>
</tabu>

To determine which month had the highest sales and greatest percent growth, we only need to perform
four basic steps:

1. Create a computed column that assigns a quarter to each month in the table
2. Create a tabulation that groups by quarter and totals sales
3. Create a computed column that calculates percent growth
4. Create computed columns that find the highest sales total and the greatest percent growth

Step 1: Assign a quarter to each month. While we could do this by going to Columns > Create Computed
Column..., we're actually going to do everything in the Macro Language. Start with the code we generated
last time and then add the last line in bold:

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>
</tabu>
<willbe name="qtr" value="quarter((year*100)+month)" label="Quarter"/>

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 11

The line above produces the following results:

The quarter(X) function outputs the quarter number associated with each calendar date (e.g., 1, 2, 3, 4).
In order to utilize this function, we had to manipulate and combine our two date columns, year and month,
into an acceptable format that can be recognized by the quarter(X) function. One of these formats
is YYYYMM, which is why we included the logic quarter((year*100)+month). Since our two date
columns are both in integer format, we can perform mathematical functions on their values. To get a final
number in the YYYYMM format, we just had to multiply the year by 100 and then add the month value.
For example, if we were looking at the first row, our formula would translate to (2008*100) + 11, which
would result in 200811, our YYYYMM format!

Step 2: Perform a tabulation and group by the newly created Quarter column by entering the text that
appears in bold below:

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>
</tabu>
<willbe name="qtr" value="quarter((year*100)+month)" label="Quarter"/>
<tabu label="Tabulation on Sales Detail" breaks="year,qtr">
 <break col="year" sort="up"/>
 <break col="qtr" sort="up"/>
 <tcol source="tot_sales" fun="sum" name="qtr_sales"
 label="Total`Qtr Sales"/>
</tabu>

Now we have a very similar summarization of total sales, but by quarter instead of by month. Note
that there are two break columns: qtr and year. If we only grouped by quarter, for example, it would

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/TimeDateFunctions/quarter.html

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 12

aggregate sales across all second quarters across all years. By including the year column in the breaks,
we are distinguishing between the second quarter in different years.

Step 3: Create a computed column to calculate percent growth.

Similar to our original analysis, we can use the g_rshift(G;S;O;X;N) function to calculate the percent
growth by quarter. As an additional challenge, let's see if we can do this calculation in a single computed
column. Remember, originally we first created a column to copy the prior year's sales value into the current
year's row, and then we created another column to actually do the percentage calculation. This time, we
are going to combine these two steps into one. Essentially, we are going to substitute in the value portion
of our ly_sales computed column into the value portion of our yoy_perc computed column.

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>
</tabu>
<willbe name="qtr" value="quarter((year*100)+month)" label="Quarter"/>
<tabu label="Tabulation on Sales Detail" breaks="year,qtr">
 <break col="year" sort="up"/>
 <break col="qtr" sort="up"/>
 <tcol source="tot_sales" fun="sum" name="qtr_sales"
 label="Total`Qtr Sales"/>
</tabu>
<willbe name="yoy_perc" value="(qtr_sales-(g_rshift(qtr;;;qtr_sales;-1)))/
g_rshift(qtr;;;qtr_sales;-1)" format="type:pct;dec:2"/>

The above code will result in the following:

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/GroupFunctions/g_rshift.html

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 13

If we wanted to find which quarter had the highest sales or the greatest growth, we could just sort the
columns in descending order, but let's say we want to rank the values without changing the order of the
table. We can do this by creating some new columns using the g_rank(G;S;O;X) function.

Step 4: For the final step, add the code that appears in bold below to rank the qtr_sales column and the
yoy_perc column separately.

<note type="base">Applied to table: retaildemo.salesdetail</note>
<willbe name="month" value="month(date)"/>
<willbe name="year" value="year(date)" format="type:nocommas"/>
<tabu label="Tabulation on Sales Detail" breaks="year,month">
 <break col="year" sort="up"/>
 <break col="month" sort="up"/>
 <tcol name="tot_sales" source="xsales" fun="sum" label="Sum
 of`Extended`Sales"/>
</tabu>
<willbe name="qtr" value="quarter((year*100)+month)" label="Quarter"/>
<tabu label="Tabulation on Sales Detail" breaks="year,qtr">
 <break col="year" sort="up"/>
 <break col="qtr" sort="up"/>
 <tcol source="tot_sales" fun="sum" name="qtr_sales"
 label="Total`Qtr Sales"/>
</tabu>
<willbe name="yoy_perc" value="(qtr_sales-(g_rshift(qtr;;;qtr_sales;-1)))/
g_rshift(qtr;;;qtr_sales;-1)" format="type:pct;dec:2"/>
<willbe name="rank_sales" value="g_rank(;;;qtr_sales)" label="Sales`Rank"/>
<willbe name="rank_perc" value="g_rank(;;;yoy_perc)" label="Growth`Rank"/>

Now you should see two new columns containing integers ranging between 1 and the number of total rows
in the table, which in this case is 13. The g_rank(G;S;O;X) function will rank the largest value as 1 and
then incrementally number each row in descending order.

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/GroupFunctions/g_rank.html

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 14

The data clearly shows that the fourth quarter of 2009 is both the highest selling quarter and the highest
growth quarter. You just completed a second analysis by regrouping on a different time frame!

If you're interested in taking this process one step further to discover what drives these results, here are
some questions you might ask:

• Do higher priced items account for the higher percentage of total sales during the better performing
quarters as opposed to the poorly performing quarters?

• Does volume sold account for the higher percentage of total sales during the better performing quarters
as opposed to the poorly performing quarters?

• How has the distribution of item price and volume sold changed over time? Does either move in line
with the sales trends?

How to convert integers into month names using case(X;V1;R1;V2;R2;...;D)

The case(X;V1;R1;V2;R2;...;D) function allows us to programmatically write, "For column X, if the
value is V1, write R1; if the value is V2, write R2; if the value is V3, write R3..., otherwise, write D." Knowing
this, you can now see how useful this function is in our month-naming use case. To convert our original
month column of integers into a new column containing month names, the only logic we need is:

<willbe name="month_name" value="case(month;1;'Jan';2;'Feb';3;'Mar';
 4;'Apr';5;'May';6;'Jun';
 7;'Jul';8;'Aug';9;'Sep';
 10;'Oct';11;'Nov';'Dec')"/>

In the above example, we chose to use the three-lettered month abbreviations, but you can write whatever
you prefer. Now, you should have a month_name column that corresponds to your month column in the
following manner:

http://www2.1010data.com/documentationcenter/beta/1010dataReferenceManual/index_frames.html?q=Functions/CategorizationFunctions/case.html

Year-Over-Year Analysis | Retail Year-Over-Year (YOY) Analysis | 15

As you can probably guess, the case(X;V1;R1;V2;R2;...;D) function can be incredibly useful in
various scenarios. Creating your new month_name column is just the first!

	Contents
	Retail Year-Over-Year (YOY) Analysis
	Quarter with Highest Sales and Highest Growth

