ten.MetaData()

Return a MetaData object.

Syntax

ten.MetaData()

Methods

MetaData.from_path(table,ops=None)
Creates a MetaData object.

Arguments:

table
A utf-8 string representing the base path.
ops
A list representing the set of ops. The default value is None.
MetaData.from_arrays(arrays,names=None,labels=None)
Creates a MetaData object.

Arguments:

arrays
A list of NumPy arrays, each with a dtype.
names
A list of unicode column names. The default value is None, which will generate the column names c1, c2, …, etc.
labels
A list of unicode column labels. The default value is None, which will copy names to labels.
MetaData.from_pandas(df,multiindex_ignore)
Creates a MetaData object.

Arguments:

df
A pandas DataFrame.
multiindex_ignore
A boolean value. The default value is False, or throw an error if a multi-indexed pandas DataFrame is passed. If True, the method will not throw an error if a multi-index DataFrame is passed.

Returns

A MetaData object, which contains the variables names, labels, and types.

Example

In the following example, we instantiate metadata md with ten.GetData() and use md.from_path() to set the metadata to the current state of the query. We then update the labels metadata by replacing GM with 'General Motors' and adding ($M) to the labels.

<base table="demos.autosales"/>
<code language_="python">
<![CDATA[
md = ten.MetaData()
md.from_path(table)
dat = ten.GetData(ops,table).as_pandas()
md.labels[1] = 'General Motors' # was GM
md.labels = list(map(lambda x: x +' ($M)',md.labels))
ops = ten.rebase(dat,md)
]]>
</code>

The original demos.autosales table looks like the following:

The Python code changes the labels to look like the following: